HF jet tagging with full G4 tracking simulation

Dennis V. Perepelitsa Brookhaven National Laboratory

3 May 2016 sPHENIX Simulations Meeting

Reminder of MIE proposal update study

- Explored b-jet tagging via "TrackCounting" algorithm, which requires the presence of multiple tracks in the jet with a large impact parameter to PV (or 2-D DCA)
- Parameterized "Fast simulation" study:
 - → used true hadron DCA, smeared by parameterization of DCA resolution from G4 sims
 - → used ideal seven-layer silicon tracker
 - studied primarily PYTHIA events, with some parameterized UE embedding studies
- Next several slides are from my talk at the DOE Science Review on 30 April 2015

TrackCounting algorithm

Fast simulation study, using a parameterized DCA resolution

Generate $p_T > 20$ GeV light,

Impact

Parameter

charm and bottom jets

Consider charged

hadrons with

 $p_{T} > 0.5 \text{ GeV}$

in the jet cone

Secondary Vertex

Decay Length

Jet/Axis

Primary Vertex

Calculate true signed DCA

GEANT4

Smear true **DCA** with parameterized resolution derived from

Reject hadrons with DCA > 1 mm or those

consistent with V⁰ → h±h±

Sort remaining hadrons by their signed $DCA significance S_{DCA} = DCA / \sigma_{DCA}$

Reconstructed DCA of hadrons in jets

- High-S_{DCA} in charm/bottom jets from displaced vertices
- High- S_{DCA} tail in **light** jets from tails in DCA resolution and Σ/Ξ decays (cannot be removed with two-track mass analysis)

Reconstructed DCA of hadrons in jets

- Asking for a second track with high S_{DCA} cuts down on the **light** jet background
- Charm and bottom jets retain large- S_{DCA} tails

b-jet performance in p+p

Calculate **efficiency** for light, charm and bottom jets

Calculate **purity** of *b*jets after cuts as $P = N_b / (N_b + N_c + N_l)$

Vary S_{DCA} cut value to trade off **b-jet efficiency** vs. **b-jet purity**

b-jet performance in p+p

b-jet purity

P vs. **E** curves for requiring **1**, **2** or **3** tracks with S_{DCA} above some minimum value

Updated study with G4

MC sample

- $N_{\text{evt}} = 10 \text{k}$ Pythia8 events with PhaseSpace:pTHatMin = 30.0, with one of the following hard scattering channels on:
 - → HardQCD:all (light), HardQCD:hardccbar (charm), HardQCD:hardbbbar (bottom)
 - → note: for more realistic samples, should actually run lots of small-pTHatMin, HardQCD::all events and trigger at truth-level
 - → note: "light" sample actually has small admixture of c/b-jets
- Full G4 tracking simulation, using MIE proposal tracker (ideal sevenlayer silicon, G4_Svtx.C)
- Select truth jets with $p_T > 20$ GeV, $|\eta| < 0.6$
 - → about $N_{\rm jet} \sim 13 {\rm k}$ in each sample
 - \rightarrow note: p_T spectrum unphysical

Truth-level p_T and transverse distance from PV

- "Truth-level": analyze final-state charged particles with $p_T > 0.5$ GeV that are $\Delta R < 0.4$ from the truth jet axis
 - ⇒ then, match to HepMC record particle and record $r = \sqrt{(x^2 + y^2)}$ of its production vertex
- r distributions obviously flavor-dependent

Truth-level p_T by species

- Each panel is a fixed flavor of jet
 - ⇒ showing truth-level p_T spectrum broken out by particle ID
 - → HF jets have more K's, p's, e's and μ's from HF decay chains

Truth-level production r by species

- Each panel is a fixed flavor of jet
 - → showing truth-level r distribution broken out by particle ID
 - particles in HF jets have more displaced production points

counts / 0.25 mm

Reco-level pt and DCA

- "Reco-level": tracks with $p_T > 0.5$ GeV with $\Delta R < 0.4$ to a truth jet
 - → no further selection on $N^{\text{cluster}}_{\text{best}}$, closeness of reco p_{T} to truth p_{T} , etc. (i.e. analyzing this as one would analyze data)
- Right: signed 2-D DCA distributions for those tracks
 - → ± defined by dot product between DCA vector and jet vector.

Reco track multiplicities

- Left: distribution over number of reco tracks with $p_T > 0.5$ GeV with $\Delta R < 0.4$ to a truth jet
 - → with MIE-proposal tracking, plenty of tracks to cut on
 - → can see b-jets have larger multiplicity
- Right: same distribution but for $p_T > 1$ GeV

Largest- and 2nd-largest-DCA

- Left: largest-DCA of the tracks in jet, by jet flavor
 - → as expected, prominent tails in charm/bottom jets, but also nontrivial tail in light jets (partially from small b/c admixture)
- Right: second-largest-DCA among tracks in jet, by jet flavor
 - → still large tail in bottom jets, but suppressed in light jets

DCA uncertainty

- Uncertainty on DCA (->get_dca2d_error()) for tracks in bottom jets, vs. track DCA (left) and track p_T (right)
- As an alternative, categorize tracks by $S_{DCA} = DCA / DCA$ error
 - → gives larger discriminating power to high-p_T tracks with a more-precisely-known DCA
 - \rightarrow for the MIE update, we used TrackCounting with S_{DCA} , not DCA

Largest- and 2nd-largest-S_{DCA}

- Left: largest- S_{DCA} of the tracks in jet, by jet flavor
- · Right: second-largest-DCA among tracks in jet, by jet flavor

Zoom in on x-range to compare to MIE proposal update plots

Efficiencies for min. DCA cuts

- Now: require jets to have a largest or second-largest DCA above some minimum value DCA_{min}
 - → What is the efficiency ∈ for this cut for the different flavors, as a function of DCA_{min}?
- Above: ∈ for requiring largest or second-largest DCA > DCA_{min}
 - → ∈ decreases with stricter cut, and is ordered by flavor

Efficiencies for min. S_{DCA} cuts

- Now: require jets to have a largest or second-largest S_{DCA} above some minimum value S_{min}
- Above: \in for requiring largest or second-largest $S_{DCA} > S_{min}$

b-jet eff vs. /-jet rej.

- Important caveats:
 - my "b-jets" are directly produced bbar pairs (no FE, GS production modes)
 - → my "I-jets" are actually inclusive jets and so have a small admixture of b's and c's
- Will have to fix these before taking results seriously

21

Conclusion

- First look at b-tagging with full G4 tracking simulation of ideal seven layer silicon in pp collisions
 - → caveat: need more appropriate //c/b-jet event samples before extracting a purity/efficiency curve
- Ready to simulate other tracking configurations as part of response to Berndt's charge
 - → for example, can investigate effects of inefficiency/ ganging in reconfigured VTX pixel + strips...